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SUMMARY 

New error bounds are developed for the Liouville- 

Green approximation to the solution of an important class 

of differential equations arising in military operations 

research (specifically, variable-coefficient Lanchester- 

type equations of modern warfare for combat between two 

homogeneous forces).  In contrast to many previous re- 

sults, our error bounds apply to initial-value problems 

and are expressed in terms of initial conditions.  Previous 

error bounds for boundary-value problems are sharpened as 

a consequence of our development of these new error bounds 

for initial-value problems.  Finally, applications are 

made to some important specific models of combat between 

two homogeneous forces with time-dependent attrition- 

rate coefficients. 

K 

-rt- 

• •   . mm .... 



^WJ^Wl[ÄW4Wwv" 

1.  Introduction 

OLVER [12] has developed error bounds for the so-called 

LI0UVILLE-GREEN1) (LG) approximation [5, 10] to the solution of 

the differential equation 

d2x 
dt* J(t)x. (1) 

His results extended earlier work by BLUMENTHAL [1]. The LG 

approximation is of particular importance in applied mathematics 

because it involves only elementary functions. As OLVER [12] 

has pointed out, however, the development of strict upper bounds 

for the errors in the approximate solutions has received rela- 

tively little attention. Moreover, the error bounds that have 

been previously developed [12, 13] are for boundary-value prob- 

lems, since most problems of interest in mathematical physics 

are boundary-value problems.  These error bounds do not apply 

to initial-value problems. 

Thus, the purpose of this paper is to develop error bounds 

for the LG approximation to initial-value problems. Furthermore, 

in recasting OLVER's results in a form suitable for initial-value 

problems, we have been able to sharpen his bounds for boundary- 

value problems.  Although we will develop our results within 

the context of a specific problem in operations research, they 

are clearly applicable to the general second order initial-value 

problem, and it is a straightforward task to so recast them. 

1) Also called the WKB approximation [13]. 
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Probably the most widely used (at least in the United 

States) deterministic differential-equation model in operations 

research [4,15-17] are LANCHESTER-type equations of warfare  , 

which are named for the pioneering 1914 work of F. W. LANCHESTER 

[9].  In this paper we consider such a linear, variable-coeffi- 

cient differential-equation model for combat between two homogene- 

ous forces.  This model yields an X force-level equation equiva- 

lent to (1).  Unfortunately, for even the simplest time-varying 

attrition-rate coefficients of interest, the solutions cannot 

in general be expressed in terms of either elementary functions 

or tabulated higher transcendental functions [17].  It is there- 

fore natural to seek an approximation in terms of elementary 

functions.  Moreover, one is always interested in a simple 

a priori estimate for the error in the approximate solution. 

In this paper we develop an errc ircmd  that is both realistic 

and easy to evaluate.  This be ^ 1 is then computed for some 

particular attrition-rate coeffici its of interest. 

2. Variable-Coefficient LANCHESTER-Type Equations of Modern 
Warfare' 

We consider the following variable-coefficient LANCHESTER- 

type equations of modern warf?.r >  for combat between two 

homogeneous forces 

2) 

3) 

We will refer to any differential-equation model of combat as 
being LANCHESTER-type equations. The state variables are 
typically the force levels of the various weapon system types. 

The term "of modern warfare" denotes that we are considering 
linear differential equations. There are other nonlinear types 
of LANCHESTER equations [4,16]. 
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dx/dt • -a(t)yf 

with initial conditions 

x(t-O) » x. 

dy/dt » -b(t)x. 

y(t-O) » y, 

(2) 

where t=0 denotes the time at which the battle begins,  x(t) 

and y(t)  denote the numbers of X and Y at time t,  and 

a(t)  and b(t)  denote time-dependent LANCHESTER attrition- 

rate coefficients.  These equations (2) have been hypothesized 

to model combat in which both sides use aimed fire and target 

acquisition times are independent of the numbers of firers and 

targets [2,19].  The attrition-rate coefficients represent the 

effectiveness of each side's fire (i.e. its firepower).  Temporal 

variations in a side's fire effectiveness (caused by, for example, 

changes in force separation, combatant postures, target acquisi- 

tion rates, etc.) are  modelled by the time-dependent attrition- 

rate coefficients.  Further discussions of the physical assump- 

tions hypothesized to yield (2), estimation of the attrition- 

rate coefficients, and the importance of (2) to military opera- 

tions research are found in [16,17]. 

We assume that a(t)  and b(t)  are positive and twice 

differentiable for tQ < t<+« with tQ<0. We also assume 

that a(t), b(t) eL(tQ,T)  for any finite T. We further take 

a(t)  and b(t)  to be given in the form a(t) - k g(t), a 

b(t) » k.h(t),  where k , k.  are positive constants chosen so 

that a(t)/b(t) - k„/k.  when g(t) - h(t)  for all t.  We ab 

introduce (see [17]) the intensity of combat I(t)  and the 

relative fire effectiveness R(t)  defined by 

I(t) - /a(t)b(t), and R(t) - a(t)/b(t). (3) 

n»W»»l,^.i.fc«.» 
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We similarly introduce the combat-intensity parameter 

the relative-fire-effectiveness parameter X. 

Xj and 

defined by 

S^,' and R W (4) 

A large class of tactical situations of interest can be 

modelled with the following general power attrition-rate 

coefficients [17] 

a(t) = k (t+C)M, and   b(t) - kb(t+C+A)
v' (5) 

where A,C > 0. We will call A the offset parameter, since it 

allows us to model (with y,v>0)  battles between weapon systems 

with different maximum effective ranges.  We will call C  the 

starting parameter, since it allows us to model (again, with 

u,v>0) battles that begin within the minimum of the maximum 

effective ranges of the two systems.  The offset and starting 

parameters are related to various physical quantities in [17]. 

We observe that tQ =-C. Also,  a(t), b(t) eL(tQ,T)  implies 

that y, v > -1. 

From (2) we may obtain the X force-level equation 

|2. 

isHsfcr IS} £-<«•»<«"-•• (6) 

with initial conditions 

x(t-0) V and  {[l/a(t)]dx/dt> t-0 -y 0* 

We may consider that t X  Y X max(t0,tQ),  where tQ    denotes the 

right-most finite singularity of the X force-level equation. 

Furthermore, we set t =0 if there are no finite singularities 



3.  LIOUVILLE-GREEN Approximation to IANCHESTER-Type Equations 
of Modern Warfare 

Let 

I   •a(s)b(s) ds » [  I(s)ds, 
JtA 

JtA 
(7) 

'0 fc0 

and denote  x(t-0)  as xQ.  Then xfl > 0  for t0<0.  From 

a(t), b(t) eL(t0,T)  it follows that T - x(t)  is well defined 

by the CAUCHY-SCHWARZ inequality for integrals.  The transforma- 

tion is also easily seen to be invertable.  We observe that 

T - TQ is related to the average intensity of combat I(t)  by 

|| J I(s)ds|t - tl(t). T"*T0*\tJ  *<•>«•#*- tl(t). 

We may call T - x_  "the elapsed normalized battle time," since 

the transformation (7) reparameterizes the battle's time scale 

in terms of elapsed time of battle and average combat intensity 

as (8) shows us.  The substitution (7) transforms (6) into 

df_x 
dx' -{!&*»*<t)}ff-X- 0, (9) 

with initial conditions 

x(x-xQ) - xQ,  and  {(l/R
1/2(t)ldx/dx>T=T  - -yQ. 

Remark 1:  It is easily shown (see [17]) that (9) may be 

transformed into a linear second order differential equation 

with constant coefficients if and only if 

1  d 
iTtT dt *n R'*^ * constant. 
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Let    RQ    denote    R(t=*0) .     The substitution 

x(x)   - X(x)[R(t)/R0l
1/4

f (10) 

transforms (9) into LIOUVILLE's normal form (see INCE [7] or 

KAMKE [8]) 

d2X 
d7* - {1+F(T)}X * 0, (11) 

with initial conditions 

X(T«T0) » XQ,  and dX/dx(x»xQ) = -yQ/R^ - xQe0, 

where 

F(T) * P"(T)/P(T), P(T) - [R(t)]~1/4,    (12) 

c(t) " 4irtrdTAnR' (13) 

e  denotes  e(t*0),  and P'(x)  denotes dP/dx. 

Writing (11) as d2X/dx2 - X m  P(x)X, we may use variation 

of parameters to obtain the solution to (11) as 

X(x) « xQ cosh (x-xQ) - (yo/RjJ+xoe0)sinh(x-xo) 

C +   F(a)sinh(x-a)X(a)da.    (14) 
r0 

.4) If one drops  the integral term in (14) , one obtains the 

LIOUVILLE-GREEN approximation X(x) 

4) Heuristically, if the appropriate fractional power of the relative 
effectiveness R(t)  is "slowly varying," then by (12) we would 
expect that  |F(x)|<<1 SO that the integral term in (14) is 
"negligible."  Theorem 1 gives us bounds on how "negligible" 
this term is. 

j- 
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£(x) • x0 cosh (T-TQ) - (yQ)/R^+x0c0)sinh(T-T0) ,      (15) 

which in terms of the original independent variable x reads 

1/4 
(t) * pTT^" {xQcosh (T-T0) - (y0/R^+x0e0)sinh(T-T0)>. (1S> 

We observe from (14) that F(x) >0  for all x > xQ implies that 

as long as  x(t) >0 we have  x(t) 2 x(t).  A similar statement 

holds for F(T) <0.  As we shall see below, such cases in which 

F(x)  is always >0  or 5 0 are readily encountered in applica- 

tions . 

4.  Error Bounds for the LIOUVILLE-GREEN Approximation 

The main result of this paper is Theorem 1. 

Theorem 1:  Error bounds for the LIOUVILLE-GREEN approximation 

are given by 

|x(t)-x(t) | <x0Kje(t) <x0K0e(t), (17) 

where 

Ky - 2{<l+|e0|) +3p^> . (18) 

y y 
J-I    for    I-^^^EQ     and    Kj - 1 + cQ + ^ ^,        (i9) 

y y 
J - II     for    -i--£^<e0 <l-~ ^     and    K^ - 2,       (20) 

J-III     for    V*-l-j^:«g     and    Km  - 1 - eQ - ^ ^>0,     (21) 

and 
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e(t)   =   T5^-]       texp(|f    |F(a) |do)-l}sinh(T-T0) . (22) 

The sign of the error is determined by the sign of    F(T).    As 

long as    x(t) >0,     it follows  that 

F(T)>0     for all     T>0     implies  that    x(t)>x(t), 

with  the  last  inequality being reversed when    F(T) <0. 

Proof:     Theorem 1 readily follows from Lemma 2, which is proven below. 

5.     Development of Error Bounds 

Consider the  following  fundamental system of solutions 

{XltX2}     to   (11) 

XJ^T)   »  {l+hk(T)}exp[(-l)(1C"1> (T-T0)]     for    k = l,2,    (23> 

where h.(x)  for k = 1,2 is to be chosen so that 

hk(x=T0) - 0,      and    dhk/dT(T=T0) = 0.     (24) 

It follows  that the solution  to   (11)   may be expressed as 

X(T)   = i{(x0(l-e0)-y0v^)e ü   [l+h^xU 

-(T-T    ) 
+   (x0(.l+e0)+y0/R^)e °   ll+h2<T)]}, (25) 

so that 

X(T)-X(T)   » j{tx0(l-e0)-y0/R^]e "h^T) 

-(T-T.) 
+   tx0(l+e0)+y0/R^Je u h2(t)}. (26) 

-«-•••- -'     ••    - ..:~.   .........      ....          •__J^jJ^«^MJ.-M,.„      --        .... ,      ,  |,^MAjJ|M^JMMM^ii| 
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Substituting (23) into (11), we find that hk(x)  for k = 1,2 

must satisfy 

d X     k dh 
T£- (-l)

K2-3^.-F(x)hk » F(T), (27) 

with initial conditions (24). 

We may consider h. (r)  for k * 1,2 to be an error term 

for the LIOUVILLE-GREEN approximation. We next develop a bound 

on its magnitude, which sharpens earlier results by OLVER [12]. 

Lemma 1:  A bound on the magnitude of nir(T)  for k = 1,2  is 

given by 

|hk(x) |exp [<-l)
(k-1-)(T-T0) ] < 2iexp(|j  |P(o) |da)-l}sinh(x-x0) .  (28) 

T0 

Proof: For notational convenience, we develop the bounds for h (T)  and 

h (x)  separately. Transposing the right-most term on the left-hand side of 

(27) for k • 1, treating (l+h (T)}F(T)  as a "forcing term," and inte- 

grating twice; we obtain the following VOLTERRA integral equation after a 

further integration by parts 

11(T) "if {l-e2(a"T)}F(°>tl+h1(o)>do. (29) 

Solving (29) in the usual manner by successive approximations, we obtain 

hl(T)- I     T(T>, 
n"l 

where T(T) 1 and for n > 1 

P
«(T)-|[ {l-e2(0"T,}F(a)T .(a)do. 
n    2 J T n-l 

(30) 

(31) 

—«wwfa* inrwiWimm u 
... -•...^.u      - •- - 
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2la  T) "2(T"Tn) 

Observing that    {1-e }<l-e ü      for    0<T   2 0<T,    we  find that 

|Ti(T,|<iil£___ LJ  1,(0)14,, 

with equality holding for x • TÄ» A straightforward inductive argument 

along the usual lines now yields 

[T"M (ft       ) n 
(32) 

i/2(T"To)} in )n 

0 

One step in the inductive proof of (32) is deserving of further elaboration, 

however. From (31) and (32) we obtain 

lTn+l
(T)l--n^i— f tl-e2(o-T>}{l.e"2(O"T0,}|F(a)|{j° |F<U) |du}V   (33) 

The inductive proof of (32) is completed by combining (33) with the observa- 
,,        ,   /       -2(o-T  )1 -2(T-T   ) 

tion that    {1-e })l-e /<l-e for    0<T   <OST.    Our 

sharpening of OLVER's results is due to this observation. The remaining 

steps in the proof of (28) for k • 1 follow along well-known lines [12,13] 

and will be omitted here. Similar arguments are used to prove (28) for 

k - 2. 

Remark   2:      In our notation, OLVER's   (12]   corresponding 

error bound for   k • 1   would read 

,     T 
|h  (T)| ^ exp(- /       |F(o)|do)-l. (34) 

x *    T0 

His corresponding error bound for  k - 2   is not directly 

comparable to our result here,  since he does not take 

both errors zero at the same point. 

'In our notation  for the  finite or infinite  interval     (TQ,T.), 

OLVER   [12,13]   takes     ^(T-T.)   • dhj/dx (T=TQ)   -  0     and 

h2(t»T1)   » dhj/dTU«-^)   • 0     in contrast  to   (24).     This  is 

what makes his results unsuitable  for initial-value problems. 

10 
    ......  .J :•••- •..••".-T.::^.-T^.^:........I. —l.-_l-_ .- : ...    ..   ... • 
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Remark 3: Similar arguments may be used to develop a 

bound on |h' (T)| . For our applications this result is 

not important. 

Lemma  2:     In terms of the transformed dependent variable    X(T), 

error bounds  for the LIOUVILLE-GREEN approximation are given by 

|X(T)-X(T) I <X0KJE(T) <XQKUE(T) , (35) 

where K„ and K  are given by (18) through (21), and 

E(x) =• {exp(if  |P(o) |do)-l}sinh(T-T0).        (36) 
T0 

Proof:  From (26) and Lemma 1 we obtain 

|X(T)-X(T) | < { Ix0<l-e0)-y0^| + U0(l+e0)+y0^| }E(T) .        (37) 

It follows that a rather loose error bound is given by 

|X{T)-X(T)|<X0KDKT). (38) 

vn i— vn r— 
We observe that for -1 /R_ < e„ < 1 /R_, we have x0    "0      0 x0      0 

lxo(1-eo)-yo'^l + lxo(1+eo)+yo,^' " 2V (39) 

so that  (37)  becomes     |X(T)-X(T)| < 2x E(T).    Thus,   (35)   is proven for    J - II. 
y 

For    1-   — Sti7<e  ,    the error bound  (37)  becomes 
x0 

y 

|X(T)-X(T)| <2x.(en + -2- V^T)E(T), (40) 
00    xo    "y 

since 

IV^^'IW^'^*^. 

11 



where 

The error bound (40) nay be sharpened, however, as follows. If F(o)»0 for 

O<TO<0<T, then as long as X(x)>0 we have X(x)>X(x) and g(x)>0, 

where for k •» 1,2 

gk<T) - J\(T) exp[(-l)
k(T-T0)]. (42) 

It follows from  (26)   that for    l-~ /R~< eÄ x0      0      0 

OSX(T) -X(T) <{x0(l+e0) +y0«^)E+(T), (43) 

E+(T) - (exp(y I    F(ö)do) - l}sinh(x-xQ). (44) 
T0 

Similarly, if    F(o) «0    for    T<O<T,    then as long as    X(x)>0   we have 

X(T)2X(T)    and   gfc(x)<0,    so that 

0>X(x) -X(x)>{x0(l+€0)+y0^}E_(T), (45) 

where 

E_(x)  - {l-exp(-j j    F(a)da)}sinh(x-T0). (46) 
T0 

It follows from (43)  and  (45)  that 

y 
|X(T)-X(T)| < x U + e +-£ ^~}E<T). (47) 

x0 
y y y 

Furthermore, since e0>l.ji*i^ implies that 2(e +— rfiT) > i+ eQ + — «^57, 
0 0 0 

the bound given by (47) is sharper than that given by (40). Thus, (35) is 

proven for J » I. The proof of (35) for J » III is similar to that for 

j » II. It is easily seen that X,<K, for xA,y > 0. 
J       u 0    0 

12 
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6.  Examples 

We now compute theoretical error bounds for two special 

cases of the LIOUVILLE-GREEN approximation to the solution of 

(6) with the general power attrition-rate coefficients (5): 

(I) power attrition-rate coefficients with no offset (i.e.  A»0), 

and (II) linear attrition-rate coefficients with positive offset 

(i.e. A>0). 

6.1.  Power Attrition-Rate Coefficients with No Offset 

In this case we have 

a(t) « ka(t+C)
y, and b(t) - kb(t+C)

v, (48) 

with C>0  and y,v > -1.  The LIOUVILLE-GREEN approximation to 

the X force level is 

x(t) - (1+t/C) (y"v)/4{x0cosh (T-T0) 

-[y0/3^ C
(y v)/2 + -^  C 6]sinh(T-T0)},  (49) 

where 

and 

x(t) - (l/ÖJXjtt+C)0, 

6 - (y+v+2)/2. 

(50) 

(51) 

In preparation for estimating the error in the LIOUVILLE- 

GREEN approximation (49) by Theorem 1« we compute 

VIT\   . (M-v) (3U+V+4) F(T) •  y—5  

13 

(32* 
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Thus,  F(T) > 0  for all  x > xQ > 0 if and only if u > v.  Hence, 

as noted at the end of Section 3, one frequently encounters in 

applications cases in which F(T)  always has the same sign. 

For the error estimate (17), we then have 

ljT  IF (a) |da- l^<3p"4){C"5-(t+C)"6}-      <53) To 1 

Remark 4:  The exact solution x(t)  to (6) with attrition- 

rate coefficients (48) is given in TAYLOR and BROWN [17] (see 

also [16]).  It may be expressed in terms of modified Bessel 

functions of the first kind of (for u,v>-l) fractional order, 

i.e.  I  for 0<a< 1.  Since few of the latter are tabulated 
a 

(i.e.  tabulations only exist for    a » ± 1/4, ± 1/3, ± 1/2, ± 2/3, 

t 3/4,     and these do correspond to cases of interest), TAYLOR 

and BROWN  [17]  suggested the use of new transcendents which 

they called LANO_STER-CXZFF0RI>-S_HLÄFLI   functions6* . 

6.2.  Linear Attrition-Rate Coefficients with Positive 
Offset 

a(t) «k (t+C),     and     b(t) -k.(t+C+A),    (54) a D 

with A,c>0.  The LIOUVILLE-GREEN approximation to the X force 

level is 

6]After earlier work by W. K. CLIFFORD [3] and L. SCHLÄFLI [14] 
(see also [6,18]). 
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1/4 
*(t> • [llIX))]  tx0co»h(x-V 

•E y0^    X0A/C 
==: + y2 777 sinh(T-Tn)},  (55) 
/1+A/C  4AT(T(1+A/C) 

J/^' i 
where 

T(t) - *§- A^/ip^T- *n(i|H-/ip^T)} (56) 

and 

*(t) - 1 + 2(t+C)/A. (57) 

For estimating the error in the LIOUVTLLE-GREEN approxi- 

mation (55), it is more convenient to express F(T) as defined 

by (12) in terms of the original independent variable t. We 

compute that 7) 

F(T) A{12(t+C) + 7A} 

16 Xj(t+C)3(t+C+A)^ 
(58) 

It follows that F(T) >0  for all  x > xQ > 0.  Thus, as in the 

previous example,  F(x)  always has the same sign.  For the 

error estimate (17), we then have 

where 

ra^t) 

m2(t) 

0 < j j   F(o)do < mindn^t) ,n»2(t)) , 

3A  <A(.   „1/2. . 7AM „3/2u 
.3, ^v5/2, U(1-q  )+*c(lq  )}' 16CW(1+A/C) 

—\-  {4(l-q
3)+2|(l-q4)}, 

(59) 

(60) 

(61) 
32CTA 

7) In general 

F(x) 1 

4b2 (t) 
&{-&lnb(t)-T&tnR<t,+&lnt?) 
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and 

q(t)   » l/(l+t/C). (62) 

It may be shown that    m.tt.)   • m^t^     implies  that    m^t) >m2(t) 

for all    t>t..     The error control term estimate    nuft)     was 

developed for "small"     t8) ,    while    m2(t)     for "large"     t9). 

Remark   5:      This case is of particular interest in military 

operations research, since it may be used to study combat 

between two weapon systems with different maximum effective 

ranges   [16).    The exact solution    x(t)     to  (6)    with attrition» 

rate coefficients   (54)   is given in  [17]   (see also  [16]).    It 

apparently cannot be expressed in terms of previously "known" 

transcendents,  since the    X    force»level equation in this case 

could not be found to correspond to any second order linear 

equation considered in  [8] or  [11]. 

7.     Final Remarks 

Although given within the context of a specific problem 

in operations research, the reader will have no trouble trans- 

lating the above results  into those  for the general  second order 

8)Letting    J -   ['       d> (^C)47A}ds we  ^ that     f
T    F(o)do  „ 

JO   (s+Cr'^s+OA)3'* JT0 

AJ„ . ,   _.w     w        . -  - 1 ft{12(S+C)+7A} •SS   .     Here we have used the bound J <  r-T • g—»- - 
16XI (C+A)V* >0        (s+C)-'" 

In this case (to be contrasted with the previous one), we have 

used the bound J s f  tüiltSIl 
Jo   f«+ei3 

7A)ds 

(s+C)r 
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initial-value problem.  In the examples of Section 6 we saw 

that for two models of considerable importance in military opera- 

tions research both the LIOUVILLE-GREEN approximation and bounds 

on its error were simply expressed in terms of elementary func- 

tions.  No previous application of the LIOUVILLE-GREEN approxi- 

mation has appeared in the operations research literature.  In 

a subsequent paper we plan to present a numerical investigation 

of the accuracy (both numerical eveluation of the theoretical 

error bounds and a comparison with the exact solution when 

available) of the LIOUVILLE-GREEN approximation to the solution 

of LANCHESTER-type equations of modern warfare for combat between 

two homogeneous forces. 
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